공부
Netflix Challenge
•
Netflix Challenge를 통해 Collaborative Filtering을 구현 → RMSE 1.01 달성
•
이후 논문들을 읽고 pytorch를 공부하기 시작하면서 다양한 추천 시스템 구현 방식을 공부하였고 Matrix Factorization(SVD), Factorization Machine, GNN 방식으로 구현하여 실험
◦
최종적으로 RMSE 0.89 달성
연구 미팅
Recommender System with LLM
Recommendation System Basics
Sequential RecSys 주제 탐색
•
선정 주제 정리
Sequential RecSys 관련 논문 탐색
•
Learning Dual Dynamic Representations on Time-Sliced User-Item Interaction Graphs for Sequential Recommendation
•
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer
•
Sequential Recommendation with Context-Aware Collaborative Graph Attention Networks
•
Time node embedding
•
Revisit Collaborative Signal in Sequential RecSys & SelfGNN
•
Experiment & Consideration
Table
Search
New Topics
Table
Search
.jpg&blockId=1b87074d-017e-8069-9667-d5678d39e51d)